Муниципальное общеобразовательное учреждение «Хотмыжская средняя общеобразовательная школа» ПРОГРАММА ЭЛЕКТИВНОГО КУРСА «Тригонометрия в ЕГЭ» ДЛЯ УЧАЩИХСЯ 10 КЛАССОВ Автор: учитель математики Созоненко Мария Афанасьевна 2011 Пояснительная записка. Предполагаемый элективный курс предназначен для реализации в 10-11 классах. Авторская программа элективного курса по математике «Тригонометрия в ЕГЭ» составлена на основе примерной программы по алгебре и началам анализа для 10- 11 класса в соответствии с требованиями федерального компонента государственного образовательного стандарта основного общего образования по математике и методических пособий «Тригонометрия» И.Гельфанд, С.Львовский А.Тоом; «Тригонометрия. Техника решения задач» М.В.Лурье; «Математика. Элементы тригонометрии. 10 класс» Г.К.Муравин, О.В.Тараканова. Образовательная область и предмет изучения. Математика, давно став языком науки и техники, в настоящее время все шире проникает в повседневную жизнь и обиходный язык, все более внедряется в традиционно далекие от нее области. Интенсивная математизация различных областей человеческой деятельности особенно усилилась со стремительным развитием ЭВМ. Компьютеризация общества, внедрение современных информационных технологий требуют математической грамотности человека на каждом рабочем месте. Это предполагает и конкретные математические знания, и определенный стиль мышления. В частности, важным аспектом является изучение тригонометрии – как автономной ветви математики. Учение о тригонометрических функциях имеет широкое применение в практике, при изучении множества физических процессов, в промышленности, и даже в медицине. Учащиеся, которые в дальнейшем в своей профессиональной деятельности будут пользоваться математикой, необходимо обеспечить высокой математической подготовкой. Разработанный элективный курс «Тригонометрия» будет способствовать достижению этой цели, так как включает ряд вопросов, не входящих в программу по математике средней школы. Новизна, актуальность и педагогическая целесообразность изучаемого курса. Данная программа предназначена для повышения эффективности подготовки учащихся 10-11 классов к итоговой аттестации по алгебре и началам анализа за курс полной средней школы и предусматривает их подготовку к дальнейшему математическому образованию, так как анализ сдачи единого государственного экзамена показал, что ученики допускают много ошибок при выполнении заданий именно этого раздела или вообще не берутся за такие задания. Этот недостаток в получении тригонометрических знаний помогает устранять данный элективный курс. Раздел «Тригонометрия» школьного курса математики наиболее сложный для учащихся. Одной из причин этого является недостаточное количество программных часов, отводимое на изучение этого раздела, а так же поверхностное изложение некоторых важных вопросов, связанных с решением тригонометрических уравнений, отбором и исследованием корней, решением тригонометрических неравенств. Данный курс направлен на удовлетворение познавательных интересов учащихся, имеет прикладное общеобразовательное значение, способствует развитию логического мышления учащихся. Элективный курс должен позволить учащемуся не столько приобрести знания, сколько овладеть различными способами познавательной деятельности. В каждом разделе курса имеются задания на актуализацию и систематизацию знаний учащихся, содержание курса способствует решению задач самоопределения ученика в его дальнейшей профессиональной деятельности. Целью элективного курса является:
Задачи курса:
Отличительной особенностью данной образовательной программы от примерной программы по алгебре и началам анализа, изучающей раздел «Тригонометрия», является то, что данный элективный курс имеет прикладное и общеобразовательное значение, способствует развитию логического мышления учащихся, углублению и систематизации знаний по тригонометрии при подготовке к итоговой аттестации. Школьная программа по математике содержит лишь самые необходимые, максимально упрощённые знания по данному разделу. Практика показывает громадный разрыв между содержанием школьной программы по математике и теми требованиями, которые налагаются на учащихся при сдаче ЕГЭ. Поэтому данная программа призвана ликвидировать этот разрыв и подготовить учащихся к успешной сдаче ЕГЭ по разделу «Тригонометрия». Курс ориентирован на расширение базового уровня знаний учащихся по математике, является предметно-ориентированным и дает учащимся возможность познакомиться с интересными, нестандартными вопросами тригонометрии, с весьма распространенными методами решения тригонометрических задач, проверить свои способности к математике. Вопросы, рассматриваемые в курсе, выходят за рамки обязательного содержания. Вместе с тем, они тесно примыкают к основному курсу. Поэтому данный элективный курс будет способствовать совершенствованию и развитию важнейших математических знаний и умений, предусмотренных школьной программой, поможет оценить свои возможности по математике. Разработанный элективный курс может быть использован учителями математики при подготовке к математическим олимпиадам, ЕГЭ, централизованному тестированию и вступительным экзаменам в высшие учебные заведения. Элективный курс предусматривает лекционно-практическую системы обучения. Программа элективного курса предлагает знакомство с теорией и практикой рассматриваемых вопросов и рассчитана на 68 аудиторных часов. В процессе изучения данного курса предполагается использование различных методов активизации познавательной деятельности школьников, а также различных форм организации их самостоятельной работы. В результате изучения курса учащиеся овладевают следующими знаниями, умениями и способами деятельности:
Ожидаемые результаты Учащиеся легко смогут восстановить в памяти весь материал:
Требования к математической подготовке учащихся.
Контроль уровня обученности В процессе изучения курса планируется следующий вид проверки усвоения уровня обученности: самостоятельный подбор задач на изучаемые темы курса из дополнительной математической литературы, решение найденных задач, самостоятельные работы, контрольные работы, тесты, защита проекта. СОДЕРЖАНИЕ ПРОГРАММЫ КУРСА Тема 1. Преобразование тригонометрических выражений. (5 час.) Соотношения между тригонометрическими функциями одного итого же аргумента. Формулы кратных аргументов. Обратные тригонометрические функции. Методы обучения: лекция, объяснение, выполнение тренировочных упражнений. Формы контроля: проверка задач для самостоятельного решения; тестовая работа. Тема 2. Свойства тригонометрических функций (6 часов) Периодичность тригонометрических функций; четность и нечетность тригонометрических функций; возрастание и убывание тригонометрических функций; область определения и область значений тригонометрических функций. Методы обучения: лекция, объяснение, выполнение тренировочных упражнений. Формы контроля: проверка задач для самостоятельного решения; тестовая работа. Тема 3. Решение тригонометрических уравнений. (36 часов.) Формулы корней простейших тригонометрических уравнений. Частные случаи решения простейших тригонометрических уравнений. Отбор корней, принадлежащих промежутку. Способы решения тригонометрических уравнений. Методы обучения: лекция, объяснение, выполнение тренировочных упражнений. Форма контроля: проверка задач для самостоятельного решения, тестовая работа. Тема 4. Решение тригонометрических неравенств. (11 часов) использование областей существования функций. Использование ограниченности функций (области значений). Графический метод .Тригонометрические подстановки. Решение тригонометрических неравенств с параметрами. Решение тригонометрических неравенств с модулем. Методы обучения: лекция, объяснение, выполнение тренировочных упражнений. Форма контроля: проверка задач для самостоятельного решения, тестовая работа. Тема 5. Вычисление наибольшего и наименьшего значений тригонометрических функций с помощью неравенства ![]() Методы обучения: лекция, объяснение, выполнение тренировочных упражнений. Форма контроля: проверка задач для самостоятельного решения, тестовая работа. Тема 6. Решение систем тригонометрических уравнений (7 часов) Методы обучения: лекция, объяснение, выполнение тренировочных упражнений. Форма контроля: проверка задач для самостоятельного решения, тестовая работа. Критерии оценок. Критерии при выставлении оценок могут быть следующими.
Учебно-тематический план.
Список используемой литературы:
Перечень видео и аудио продукции. Диск «Уроки алгебры Кирилла и Мефодия 10 – 11 классы» / М.: ООО «Кирилл и Мефодий», 2004г.; Диск Боревский Л.Я. «Курс математики XXI века» / М.: ООО «АРК-СИСТЕМ». 2003г.; Диск «Математика 5-11классы. Практикум» / ГУ РЦ ЭМТО, 2004г. Диск «Математика 5 – 11 . Новые возможности для усвоения курса математики!!!» учебное электронное издание / Дрофа 2004г. Школьная программа на домашнем компьютере «Тригонометрия не для отличников» - мультимедийный учебный курс. |
![]() | Рабочая программа составлена на основе авторской программы элективного курса Сагановой Г. А.«Тригонометрия в егэ» | ![]() | Данный курс «Функция в егэ» поддерживает изучение основного курса математики и способствует лучшему усвоению базового курса математики... |
![]() | Элективный курс «Углубленное изучение отдельных тем курса математики» соответствует целям и задачам обучения в старшей школе. Основная... | ![]() | Егэ. Он поможет школьникам систематизировать полученные на уроках знания и открыть для себя новые методы их решения, которые не рассматриваются... |
![]() | Цель данного элективного курса: подготовка учащихся к продолжению образования, повышение уровня их математической культуры | ![]() | Программа элективного курса “Делимость целых чисел” согласована с содержанием программы основного курса алгебры. Учебный материал... |
![]() | Тригонометрия” И. Гельфанд, С. Львовский А. Тоом; “Тригонометрия. Техника решения задач” М. В. Лурье; “Математика. Элементы тригонометрии.... | ![]() | Тематика и содержание элективного курса отвечает следующим требованиям: имеет социальную и личностную значимость, актуальность как... |
![]() | ... | ![]() | Егэ. Поэтому необходима целенаправленная, систематическая подготовка учащихся для того, чтобы эффективно систематизировать и обобщить... |