|
I. Пояснительная записка Нормативные правовые документы, на основании которых разработана рабочая программа:
Общая характеристика курса Цель изучения курса алгебры и начал анализа в 10-11 классах - систематическое изучение функций как важнейшего математического объекта средствами алгебры и математического анализа, раскрытие политехнического и прикладного значения общих методов математики, связанных с исследованием функций, подготовка необходимого аппарата для изучения геометрии и физики. Курс характеризуется содержательным раскрытием понятий, утверждений и методов, относящихся к началам анализа, выявлением их практической значимости. При изучении вопросов анализа широко используются наглядные соображения. Уровень строгости изложения определяется с учетом общеобразовательной направленности изучения начал анализа и согласуется с уровнем строгости приложений изучаемого материала в смежных дисциплинах. Характерной особенностью курса является систематизация и обобщение знаний учащихся, закрепление и развитие умений и навыков, полученных в курсе алгебры, что осуществляется как при изучении материала, так и при проведении обобщающего повторения. Учащиеся систематически изучают тригонометрические, показательную и логарифмическую функции и их свойства, тождественные преобразования тригонометрических, показательных и логарифмических выражений и их применение к решению соответствующих уравнений и неравенств, знакомятся с основными понятиями, утверждениями, аппаратом математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи Цели и задачи рабочей программы Изучение математики в старшей школе на профильном уровне направлено на достижение следующих целей:
Цель изучения курса алгебры и начал анализа в 10-11 классах - систематическое изучение функций как важнейшего математического объекта средствами алгебры и математического анализа, раскрытие политехнического и прикладного значения общих методов математики, связанных с исследованием функций, подготовка необходимого аппарата для изучения геометрии и физики. Курс характеризуется содержательным раскрытием понятий, утверждений и методов, относящихся к началам анализа, выявлением их практической значимости. При изучении вопросов анализа широко используются наглядные соображения. Уровень строгости изложения определяется с учётом общеобразовательной направленности изучения начал анализа и согласуется с уровнем строгости приложений изучаемого материала в смежных дисциплинах. Характерной особенностью курса являются систематизация и обобщение знаний учащихся, закрепление и развитие умений и навыков, полученных в курсе алгебры, что осуществляется как при изучении нового материала, так и при проведении обобщающего повторения. Учащиеся систематически изучают тригонометрические, показательную и логарифмическую функции и их свойства, тождественные преобразования тригонометрических, показательных и логарифмических выражений и их применение к решению соответствующих уравнений и неравенств, знакомятся с основными понятиями, утверждениями, аппаратом математического анализа в объёме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи. Место предмета в учебном плане Согласно Федеральному базисному учебному плану для общеобразовательных учреждений Российской Федерации для обязательного изучения алгебры в 11 классе (общеобразовательных) отводится 102 часа из расчета 3 часа в неделю Формы контроля Промежуточный контроль проводится в виде самостоятельных работ, тестов и письменных контрольных работ. Итоговый контроль осуществляется в соответствии с учебным планом школы Планируемые результаты изучения предмета В результате изучения математики на базовом уровне ученик должен знать / понимать: – значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе; – идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики; – значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций; – универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности; – различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике; – вероятностный характер различных процессов и закономерностей окружающего мира. Числовые и буквенные выражения уметь: – выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; пользоваться оценкой и прикидкой при практических расчетах; – применять понятия, связанные с делимостью целых чисел при решении математических задач; – проводить преобразование числовых и буквенных выражений; - находить значение корня, степени, логарифма, значения тригонометрических выражений на основе определений, с помощью калькулятора, таблиц; - выполнять тождественные преобразования иррациональных, степенных, показательных, логарифмических и тригонометрических выражений; использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: – практических расчетов по формулам, используя при необходимости справочные материалы и простейшие вычислительные устройства. Функции и графики уметь: – определять значение функции по значению аргумента при различных способах задания функции; – строить графики изученных функций, выполнять преобразование графиков; – описывать по графику и по формуле поведение и свойства функций; – решать уравнения, системы уравнений, неравенства; используя свойства функций и их графические представления; - иметь наглядные представления об основных свойствах функций, иллюстрировать их с помощью графических изображений; - изображать графики основных элементарных функций по свойствам; - уметь использовать свойства функций для сравнения и оценки её значений; - понимать геометрический и механический смысл производной, находить производные элементарных функций, пользуясь таблицами производных и правилами дифференцирования, применять производную для исследования свойств функций и построения графиков; - понимать смысл понятия первообразной, находить первообразные для суммы функций и произведения функции на число; - вычислять в простейших случаях площади криволинейных трапеций. Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: – описания и исследования с помощью функций реальных зависимостей, представления их графически; интерпретации графиков реальных процессов. Уравнения и неравенства уметь: – решать тригонометрические уравнения; – доказывать несложные неравенства; – находить приближенные решения уравнений и их систем, используя графический метод; – решать уравнения, неравенства и системы с применением графических представлений, свойств функций, производной; - решать иррациональные, показательные, логарифмические и тригонометрические уравнения и неравенства; - решать системы уравнений с двумя переменными; - иметь представление о графическом способе решения уравнений, неравенств и систем. Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: – построения и исследования простейших математических моделей. Содержание учебного курса 1. Первообразная и интеграл. Первообразная. Первообразные степенной функции с целым показателем (n ≠ - 1), синуса и косинуса. Простейшие правила нахождения первообразных. Площадь криволинейной трапеции. Интеграл. Формула Ньютона — Лейбница. Применение интеграла к вычислею площадей и объемов. Основная цель — ознакомить с интегрированием как операцией, обратной дифференцированию; показать применение интеграла к решению геометрических задач. Задача отработки навыков нахождения первообразных не ставится, упражнения сводятся к простому применению таблиц и правил нахождения первообразных. Интеграл вводится на основе рассмотрения задачи о площади криволинейной трапеции и построения интегральных сумм. Формула Ньютона — Лейбница вводится на основе наглядных представлений. В качестве иллюстрации применения интеграла рассматриваются только задачи о вычислении площадей и объемов. Следует учесть, что формула объема шара выводится при изучении данной темы и используется затем в курсе геометрии. Материал, касающийся работы переменной силы и нахождения центра масс, не является обязательным. При изучении темы целесообразно широко применять графические иллюстрации. 2. Показательная и логарифмическая функции. Понятие о степени с иррациональным показателем. Решение иррациональных уравнений. Показательная функция, ее свойства и график. Тождественные преобразования показательных уравнений, неравенств и систем. Логарифм числа. Основные свойства логарифмов. Логарифмическая функция, ее свойства и график. Решение логарифмических уравнений и неравенств. Производная показательной функции. Число е и натуральный логарифм. Производная степенной функции. Основная цель — привести в систему и обобщить сведения о степенях; ознакомить с показательной, логарифмической и степенной функциями и их свойствами; научить решать несложные показательные, логарифмические и иррациональные уравнения, их системы. Следует учесть, что в курсе алгебры девятилетней школы вопросы, связанные со свойствами корней n-й степени и свойствами степеней с рациональным показателем, возможно, не рассматривались, изучение могло быть ограничено действиями со степенями с целым показателем и квадратными корнями. В зависимости от реальной подготовки класса эта тема изучается либо в виде повторения, либо как новый материал. Серьезное внимание следует уделить работе с основными логарифмическими и показательными тождествами, которые используются как при изложении теоретических вопросов, так и при решении задач. Исследование показательной, логарифмической и степенной функции производится в соответствии с ранее введённой схемой. Проводится краткий обзор свойств этих функций в зависимости от значений параметров. Раскрывается роль показательной функции как математической модели, которая находит широкое применение при изучении различных процессов. Материал об обратной функции не является обязательным. 3. Повторение. Тематический план
|
![]() | Нормативные акты и учебно методические документы, на основании которых разработана рабочая программа | ![]() | Нормативные правовые документы, на основании которых разработана рабочая программа |
![]() | Нормативные правовые документы, на основании которых разработана рабочая программа | ![]() | Учебный план маоу «Викуловская сош №1» на 2016-2017 учебный год разработан в соответствии с |
![]() | Образовательная программа мбоу «Лукашевская сош» разработана в соответствии с требованиями, предъявляемыми Министерством образования... | ![]() | В соответствии с Федеральным законом «Об образовании в Российской Федерации» №273-фз п. 7 ч ст. 28, на основании решения педагогического... |
![]() | ЛО1 №0000030, регистрационный номер 699 – 26, выдана 1 марта 2012 г. На основании решения приказа Министерства образования Оренбургской... | ![]() | |
![]() | Учебный план на 2015/2016 учебный год сформирован в соответствии с нормативными документами | ![]() | Подготовка к государственной итоговой аттестации по образовательным программам среднего общего образования по математике в форме... |