Муниципальное бюджетное общеобразовательное учреждение
«Вечерняя (сменная) общеобразовательная школа №2» «УТВЕРЖДАЮ»
Директор ВСОШ №2
__________________Михайлова Г.С.
«____» ______2016 г.
Рабочая программа по математике
10 – 11 классов очно-заочной формы обучения
среднего (полного) общего образования
вечерней (сменной) общеобразовательной школы
2016-2017 учебный год
Разработчики:
Заузольцева Валентина Васильевна
Антонова Ирина Геннадьевна
учителя математики
Согласована с
Подвальной Н.В.
(ФИО руководителя М/О)
Пшеничниковой М.В.
(ФИО заместителя директора по УВР)
31.08.2016 г.
| Рассмотрена на заседании
методического объединения
Протокол №4 от 31.08.2016 г.
|
2016 год
Среднее общее образование
Пояснительная записка
Рабочая программа по математике 10 – 11 класса разработана в соответствии требований ФКГОС 2004г. на основе Примерной программы среднего (полного) общего образования по математике, базовый уровень.
Рабочая программа составлена в соответствии с требованиями следующих документов:
Закон РФ «Об образовании РФ» № 273 – ФЗ;
Федеральный компонент государственного стандарта общего образования (Приказ МО РФ от 5 марта 2004г. №1089);
Положение о системе оценивания знаний, умений, навыков, компетенций учащихся и форме, порядке и периодичности текущего и промежуточного контроля уровня учебных достижений учащихся ВСОШ №2, утв. приказом № 100 от 12.02.2014 г.
Положение о рабочих программах учебных предметов, факультативов, элективных курсов, утверждённым приказом № 201 от 07.05.14;
Положение о предметно – курсовой системе обучения, утв. приказом № 168 от 30.04.2010 г.
Об утверждении учебного плана, годового календарного графика, учебников на 2016 -2017 учебный год (приказ № 90 от 23.03.2016 г.)
Рабочая программа составлена в соответствии с учебным планом и учебным графиком (приказ № 90 от 23.03.2016 г.) и рассчитана на реализацию в течение 2 лет в количестве 288 часов ГК (по 144 часа ГК ).
Реализация учебной программы обеспечивается учебными пособиями: Алгебра и начала математического анализа. 10 – 11 классы: учеб. для общеобразоват. организаций: базовый и углубл. уровни / [Ш.А. Алимов, Ю.М.Колягин, М.В.Ткачёва и др.].– 2-е изд. – М. : Прсвещение, 2015.; Геометрия : учеб. для 10 – 11 кл. общеобразоват. учреждений / Л.С.Атанасян, В.Ф. Бутузов, С.Б.Кадомцев и др. (базовый и профильный уровень) изд.– М. : Просвещение, 2011
Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса. Рабочая программа разработана с учетом специфики работы в классах очно – заочного обучения. Цели Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:
формирование представлений о математике, как универсальном языка науки, средстве моделирования явлений и процессов, об идеях и методах математики;
развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;
овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных
дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
воспитание средствами математики культуры личности; отношения к математике как части общечеловеческой культуры; знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.
Задачи:
систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;
расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей, в том числе в физике, химии, информатике и др.
развитие представлений о закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;
знакомство с основными идеями и методами математического анализа.
Характеристика контингента обучающихся
В вечерней (сменной) общеобразовательной школе математика является одним из основных учебных предметов. При её изучении учитываются индивидуальные психологические особенности обучающихся. Контингент обучающихся весьма пестрый по возрастному и социальному составу. Для большинства характерны: низкий уровень развития познавательных способностей и уровень мотивации к учебной деятельности, слабо сформированы общеучебные умения и навыки, самоконтроль, самооценка. Память механическая. Обучающиеся испытывают затруднения при работе с учебными текстами, установлении причинно – следственных связей, построении логической цепочки, обобщении учебного материала. Главная причина – выпадение их из нормального возрастного образовательного потока, дидактическая запущенность, завышенная самооценка, большой перерыв в обучении по времени; многие учащиеся вечерней формы обучения работают, имеют семьи и поэтому у них нет возможности заниматься систематически. Технологии, методы и формы организации учебного процесса:
Учитывая особенности обучающихся заочных классов наиболее целесообразно использовать технологии дифференцированного обучения, развивающего обучения, элементы технологии укрупнённых дидактических единиц, применяя личностно – ориентированного подход.
Для реализации используемых технологий обучения чаще применяю следующие методы: объяснительно – иллюстративный, словесный, наглядный, репродуктивный, частично – поисковый;
Формы работы: индивидуальные, групповые, индивидуально-групповые, фронтальные, классные и внеклассные.
Общеучебные умения, навыки и способы деятельности
В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:
- построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин (физики, химии,
информатики, биологии и др);
- выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;
- самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;
- проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;
- самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.
Межпредметные и межкурсовые связи:
при работе широко используются: физика –«Действительные числа»,«Степенная функция», химия – «Действительные числа»,
биология – « Действительные числа», «Показательная функция». Предметно – содержательный анализ программы по математике
№ п/п
| Разделы, блоки
| Количество часов
| Примерная прогр.(280ч)
| Рабочая прогр. (288ч)
| 10 кл
(144 ч)
| 11 кл
(144 ч)
| 1
| Алгебра
| 40
| 47
| 41
| 6
| 2
| Функции
| 30
| 30
| 13
| 17
| 3
| Начала математического анализа
| 20
| 39
| 0
| 39
| 4
| Уравнения и неравенства
| 40
| 43
| 32
| 11
| 5
| Элементы комбинаторики, статистики и теории вероятностей
| 20
| 20
| –
| 20
| 6
| Геометрия
| 100
| 104
| 57
| 47
| 7
| Резерв
| 30
| 5
| 1
| 4
|
| итого
| 280
| 288
| 144
| 144
|
Основное содержание
(288ч) Алгебра (40 ч ) Корни и степени. Корень степени n>1 и его свойства. Степень с рациональным показателем и ее свойства. Понятие о степени с действительным показателем. Преобразования простейших выражений, включающих арифметические операции, а также операцию возведения в степень и операцию логарифмирования.
Логарифм. Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени. Десятичный и натуральный логарифмы, число е. Вычисление десятичных и натуральных логарифмов на калькуляторе. Применения логарифмов в реальной практике. Преобразования простейших выражений, включающих арифметические операции, а также операцию возведения в степень и операцию логарифмирования.
Основы тригонометрии. Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла. Синус, косинус, тангенс и котангенс числа. Основные тригонометрические тождества. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Преобразования простейших тригонометрических выражений.
ФУНКЦИИ (30 ч)
Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства функций: монотонность, четность и нечетность, периодичность, ограниченность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума (локального максимума и минимума). Графическая интерпретация.
Степенная функция с натуральным показателем, её свойства и график.
Тригонометрические функции у = sinx, у = cosx их свойства и графики; периодичность, основной период.
Показательная функция (экспонента), её свойства и график.
Логарифмическая функция, её свойства и график.
Примеры функциональных зависимостей в реальных процессах и явлениях: равномерные и равноускоренные процессы и их описание с помощью линейных и квадратичных функций; процессы экспоненциального роста. Периодические процессы и их описание с помощью тригонометрии.
Преобразования графиков: параллельный перенос, симметрия относительно осей координат.
НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА (20ч)
Понятие о производной функции, физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Применение производной к исследованию функций и построению графиков на примере многочленов.
Понятие об определенном интеграле как площади криволинейной трапеции. Первообразная. Формула Ньютона-Лейбница.
Примеры использования производной для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах. Нахождение скорости для процесса, заданного формулой или графиком. Примеры применения интеграла в физике и геометрии. Вторая производная и ее физический смысл.
Создание дифференциального и интегрального исчисления. Ньютон и Лейбниц.
УРАВНЕНИЯ И НЕРАВЕНСТВА ( 40 ч)
Решение простейших тригонометрических уравнений.
Арксинус, арккосинус, арктангенс числа.
Решение рациональных, показательных, логарифмических уравнений и неравенств. Решение иррациональных уравнений.
Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение простейших систем уравнений с двумя неизвестными. Решение систем неравенств с одной переменной.
Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.
Применение математических методов для решения содержательных задач из различных областей науки и практики.
ЭЛЕМЕНТЫ КОМБИНАТОРИКИ, ТЕОРИИ ВЕРОЯТНОСТЕЙ, СТАТИСТИКИ И ЛОГИКИ (20 ч)
Табличное и графическое представление данных. Числовые характеристики рядов данных.
Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля.
Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применением вероятностных методов.
ГЕОМЕТРИЯ (100 часов)
Прямые и плоскости в пространстве. Основные понятия стереометрии (точка, прямая, плоскость, пространство).
Пересекающиеся, параллельные и скрещивающиеся прямые. Угол между прямыми в пространстве. Перпендикулярность прямых. Параллельность и перпендикулярность прямой и плоскости, признаки и свойства. Теорема о трех перпендикулярах. Перпендикуляр и наклонная. Угол между прямой и плоскостью.
Параллельность плоскостей, перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла.
Расстояния от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми.
Параллельное проектирование. Площадь ортогональной проекции многоугольника. Изображение пространственных фигур.
Многогранники. Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера.
Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.
Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.
Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире.
Сечения куба, призмы, пирамиды.
Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).
Тела и поверхности вращения. Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию.
Шар и сфера, их сечения, касательная плоскость к сфере.
Объемы тел и площади их поверхностей. Понятие об объеме тела. Отношение объемов подобных тел.
Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.
Координаты и векторы. Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.
Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение по трем некомпланарным векторам.
Резерв свободного учебного времени –30 час Требования к уровню подготовки выпускников
В результате изучения математики на базовом уровне в старшей школе ученик должен Знать/понимать
значение математической науки для решения задач, возникающих в теории и в практике; широту и, в то же время, ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
вероятностный характер различных процессов окружающего мира;
Алгебра
Уметь
выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для
практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, при необходимости используя справочные материалы и простейшие вычислительные устройства.
Функции и графики
Уметь
определять значение функции по значению аргумента при различных способах задания функции;
строить графики изученных функций;
описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
решать уравнения, простейшие системы уравнений, используя в простейших случаях по формуле и их графики;
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для
описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков.
Начала математического анализа
Уметь
вычислять производные и первообразные элементарных функций, используя справочные материалы;
исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;
вычислять в простейших случаях площади с использованием первообразной;
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для
решения прикладных, в том числе социально-экономических и физических задач, задач на наибольшие и наименьшие значения, на нахождение скорости и ускорения.
Уравнения и неравенства
Уметь
решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;
составлять уравнения и неравенства по условию задачи;
использовать для приближенного решения уравнений и неравенств графический метод;
изображать на координатной плоскости множества решений простейших уравнений и их систем.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для
построения и исследования простейших математических моделей.
Элементы комбинаторики, статистики и теории вероятностей
Уметь
решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
анализа реальных числовых данных, представленных в виде диаграмм, графиков;
анализа информации статистического характера;
ГЕОМЕТРИЯ
Уметь
распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
анализировать в простейших случаях взаимное расположение объектов в пространстве;
изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
строить простейшие сечения куба, призмы, пирамиды;
решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
использовать при решении стереометрических задач планиметрические факты и методы;
проводить доказательные рассуждения в ходе решения задач.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для
исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
|