

 Муниципальное бюджетное общеобразовательное учреждение «Гимназия №1 г.Лаишево»
Лаишевского муниципального района Республики Татарстан «Рассмотрено»
| «Согласовано»
| «Утверждаю»
| Руководитель МО
| Заместитель руководителя
| Директор МБОУ
| ____/ Конурова Т.А.
Протокол №____ от
| по УР МБОУ Гимназии №1
______/Аникина Е.В.
| Гимназии №1
____/Шарипова Г.Х.
| «____»_________2015г.
| «____»__________2015г.
| Приказ №____ от
|
|
| «____»__________2015г.
| Рабочая программа
курса «математика»
базовый уровень, 9б класс
Ефремовой Натальи Валерьевны
учителя первой категории
2015-2016 учебный год
Пояснительная записка.
Рабочая программа по математике для 9 класса составлена в соответствии с требованиями федерального компонента государственного образовательного стандарта основного общего образования на основе:
примерной Программы основного общего образования по математике;
Программы общеобразовательных учреждений по алгебре для 7–9 классов к учебному комплекту для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н., составитель Т.А. Бурмистрова – М: «Просвещение», 2014);
Программы общеобразовательных учреждений по геометрии для 7–9 классов к учебному комплекту для 7-9 классов (авторы Л.С. Атанасян, В.Ф. Бутузов, С.В. Кадомцев и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2011).
Изучение математики на ступени основного общего образования направлено на достижение следующих целей:
овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.
Задачи изучения курса математики в 9 классе:
расширить сведения о свойствах функций, ознакомить учащихся со свойствами и графиком квадратичной функции, выработать умение строить график квадратичной функции и применять графические представления для решения неравенств второй степени с одной переменной;
выработать умение решать простейшие системы, содержащие уравнения второй степени с двумя переменными, и решать текстовые задачи с помощью составления таких систем;
дать понятие об арифметической и геометрической прогрессиях как числовых последовательностях особого вида;
научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач;
развить умение применять тригонометрический аппарат при решении геометрических задач;
расширить знание учащихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы их вычисления;
познакомить учащихся с понятием движения и его свойствами, с основными видами движений;
дать представление о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
формировать ИКТ компетентность через уроки с элементами ИКТ;
формировать навык работы с тестовыми заданиями;
подготовить учащихся к итоговой аттестации в новой форме.
Используемый учебно-методический комплект:
Алгебра. 9 класс: учебник для общеобразовательных учреждений / Ю. Н, Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; под ред. С. А. Теляковского. – М.: Просвещение, 2012.
Геометрия. 7-9 классы: учебник для общеобразовательных учреждений /Л.С.Атанасян, В.Ф. Бутузов, С.Б.Кадомцев – М.: Просвещение, 2009.
Реализация рабочей программы рассчитана на 170 часов (102 часа отведено на изучение алгебры и 68 часов – геометрии), что соответствует 5 часам в неделю.
Основной формой организации образовательного процесса в 9 классе является урок. Формы организации учебного процесса на уроке: индивидуальные, групповые, фронтальные. Технические средства обучения: ноутбук, мультимедиапроектор
Формы промежуточной аттестации.
Промежуточная аттестация проводится в форме тестов, математических диктантов, зачётов, контрольных и самостоятельных работ.
Требования к уровню подготовки учащихся, обучающихся по данной программе
В результате изучения математики ученик должен
Арифметика
Уметь:
выполнять устный счет с целыми числами, обыкновенными и десятичными дробями;
переходить от одной формы записи чисел к другой, выбирая наиболее подходящую, в зависимости от конкретной ситуации; представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты в виде дроби и дробь в виде процентов; применять стандартный вид числа для записи больших и малых чисел; выполнять умножение и деление чисел, записанных в стандартном виде;
изображать числа точками на координатной прямой;
выполнять арифметические действия с рациональными числами, сравнивать рациональные числа; находить значения степеней с целыми показателями и корней; находить значения числовых выражений;
округлять целые числа и десятичные дроби, находить приближенное значение числового выражения; пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;
решать текстовые задачи, включая задачи на движение и работу; задачи, связанные с отношением и с пропорциональностью величин; основные задачи на дроби и на проценты; задачи с целочисленными неизвестными.
Применять полученные знания:
для решения несложных практических расчетных задач, в том числе, с использованием при необходимости справочных материалов и простейших вычислительных устройств; для устной прикидки и оценки результатов вычислений; для проверки результата вычисления на правдоподобие, используя различные приемы; для интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.
Алгебра
Уметь:
составлять буквенные выражения и формулы по условиям задач, осуществлять подстановку одного выражения в другое, осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, выражать из формул одни переменные через другие;
выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы уравнений (линейные и системы, в которых одно уравнение второй, а другое первой степени);
решать линейные неравенства с одной переменной и их системы, квадратные неравенства;
решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, учитывать ограничения целочисленности, диапазона изменения величин;
определять значения тригонометрических выражений по заданным значениям углов;
находить значения тригонометрических функций по значению одной из них;
определять координаты точки в координатной плоскости, строить точки с заданными координатами; решать задачи на координатной плоскости: изображать различные соотношения между двумя переменными, находить координаты точек пересечения графиков;
применять графические представления при решении уравнений, систем, неравенств;
находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу;
строить графики изученных функций, описывать их свойства, определять свойства функции по ее графику;
распознавать арифметические и геометрические прогрессии, использовать формулы общего члена и суммы нескольких первых членов.
Применять полученные знания:
для выполнения расчетов по формулам, понимая формулу как алгоритм вычисления; для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах; при моделировании практических ситуаций и исследовании построенных моделей (используя аппарат алгебры);
при интерпретации графиков зависимостей между величинами, переводя на язык функций и исследуя реальные зависимости;
для расчетов, включающих простейшие тригонометрические формулы;
при решении планиметрических задач с использованием аппарата тригонометрии.
Элементы логики, комбинаторики, статистики и теории вероятностей
Уметь:
оценивать логическую правильность рассуждений, в своих доказательствах использовать только логически корректные действия, понимать смысл контрпримеров;
извлекать информацию, представленную в таблицах, на диаграммах, на графиках; составлять таблицы; строить диаграммы и графики;
решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;
вычислять средние значения результатов измерений; находить частоту события;
в простейших случаях находить вероятности случайных событий, в том числе с использованием комбинаторики.
Применять полученные знания:
при записи математических утверждений, доказательств, решении задач;
в анализе реальных числовых данных, представленных в виде диаграмм, графиков;
при решении учебных и практических задач, осуществляя систематический перебор вариантов;
при сравнении шансов наступления случайных событий;
для оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией.
Геометрия
Уметь:
распознавать плоские геометрические фигуры, различать их взаимное расположение, аргументировать суждения, используя определения, свойства, признаки;
изображать планиметрические фигуры, выполнять чертежи по условиям задач, осуществлять преобразования фигур;
распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их; представлять их сечения и развертки;
вычислять значения геометрических величин (длин, углов, площадей, объемов);
решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;
проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
решать основные задачи на построение с помощью циркуля и линейки: угла, равного данному; биссектрисы данного угла; серединного перпендикуляра к отрезку; прямой, параллельной данной прямой; треугольника по трем сторонам;
решать простейшие планиметрические задачи в пространстве.
Применять полученные знания:
при построениях геометрическими инструментами (линейка, угольник, циркуль, транспортир);
для вычисления длин, площадей основных геометрических фигур с помощью формул (используя при необходимости справочники и технические средства).
Учебно- тематический план.
№ п/п
| Тема раздела
| Количество часов
| В том числе
| контрольных работ
| зачётов
| 1
| Повторение курса математики 5-8 класса
| 6
| 1
|
| 2
| Квадратичная функция
| 21
| 2
|
| 3
| Векторы .Метод координат
| 18
| 1
|
| 4
| Уравнения и неравенства с одной переменной
| 14
| 1
|
| 5
| Соотношения между сторонами и углами треугольника .Скалярное произведение векторов
| 11
| 1
|
| 6
| Уравнения и неравенства с двумя переменными
| 17
| 1
|
| 7
| Длина окружности площадь круга
| 12
| 1
|
| 8
| Арифметическая и геометрическая прогрессии
| 15
| 2
|
| 9
| Движения
| 8
| 1
|
| 10
| Элементы комбинаторики и теории вероятностей
| 13
| 1
|
| 11
| Начальные сведения из стереометрии. Об аксиомах планиметрии
| 10
| -
|
| 12
| Итоговое повторение
| 25
| 1
|
| Итого
| 170
| 13
|
| |