Рабочая программа по математике (5 9 классы)


страница1/9
al.na5bal.ru > Алгебра > Рабочая программа
  1   2   3   4   5   6   7   8   9

Муниципальное казенное общеобразовательное учреждение

Ачитского городского округа

«Афанасьевская средняя общеобразовательная школа»

ПРИНЯТО УТВЕРЖДАЮ

педагогическим советом Директор школы

протокол № _____ _____О.В.Тутынина

от июня 2016 г приказ №________ ________

от июня 2016г.


РАБОЧАЯ ПРОГРАММА
по математике

(5 – 9 классы)

ФК ГОС


2016г.
Пояснительная записка
Данная программа ориентирована на обучающихся 5 – 9 классов общеобразовательной школы, изучающих предмет на базовом уровне.

Настоящая программа составлена в соответствии с нормативными документами:

  • Федеральный Закон «Об образовании в Российской Федерации» от 29.12.2012 г. № 273-ФЗ;

  • Федеральный компонент государственного образовательного стандарта начального общего, основного общего и среднего (полного) общего образования (утверждён приказом Минобразования России от 5 марта 2004 г. №1089) с изменениями;

  • Региональный (национально – региональный) компонент государственного образовательного стандарта дошкольного, начального общего, основного общего и среднего (полного) общего образования Свердловской области (утверждён постановлением Правительства Свердловской области от 17.01.2006 г. № 15-ПП)

  • Устав Муниципального казенного общеобразовательного учреждения Ачитского городского округа «Афанасьевская средняя общеобразовательная школа» (в новой редакции), утвержден Постановлением Администрации Ачитского городского округа от 05.05.2015 г. № 304.

  • Основная образовательная программа основного общего и среднего общего образования Муниципального казенного общеобразовательного учреждения Ачитского городского округа «Афанасьевская средняя общеобразовательная школа», утверждена приказом от 29.06.2015

  • Примерные программы по математике. (Сборник нормативных документов. Математика / составители Э. Д. Днепров, А. Г. Аркадьев. М.: Дрофа, 2008)

  • Программа. Планирование учебного материала. Математика.5-6 классы./ автор-составитель В.И.Жохов - М.: Мнемозина, 2010

  • Программы. Математика. 5 – 6 классы. Алгебра. 7 – 9 классы. Алгебра и начала анализа. 10 – 11 классы / авт.-сост. И. И. Зубарева, А. Г. Мордкович. – М.: Мнемозина, 2009

  • Программы общеобразовательных учреждений. Геометрия. 7-9 классы / сост. Т.А Бурмистрова. – М.: Просвещение, 2009

Рабочая программа предполагает использование учебников:

Атанасян Л.С. и др. Геометрия 7-9.М.Прсвещение.2010

Виленкин Н.Я, Жохов В.И и др.Математика 5.М. Мнемозина. 2012

Виленкин Н.Я, Жохов В.И и др.М.Математика 6. Мнемозина. 2015

Колягин Ю.М., Ткачева М,В., Федерова Н.Е.,Алгебра 7. М. Просвещение. 2014

Колягин Ю.М., Ткачева М,В., Федерова Н.Е., Алгебра 8.М. Просвещение. 2014

Колягин Ю.М., Ткачева М,В., Федерова Н.Е., Алгебра 9.М. Просвещение. 2014
Без базовой математической подготовки невозможно достичь высокого уровня образования. Школьное образование в современных условиях призвано научить детей самостоятельно добывать информацию и уметь ею пользоваться. Это предполагает направленность целей обучения на формирование личности, способной к жизнедеятельности и самоопределению в информационном обществе, ясно представляющей свои потенциальные возможности, ресурсы и способы реализации выбранного жизненного пути.

Главной целью школьного образования в современных условиях является развитие ребёнка как компетентной личности путём включения его в различные виды ценностной человеческой деятельности: учёба, познание, коммуникация, профессионально – трудовой выбор, личностное саморазвитие, ценностные ориентации, поиск смыслов жизнедеятельности.

Особенность изучаемого курса математики состоит в формировании математического стиля мышления, проявляющегося в определённых умственных навыках. Использование в математике нескольких математических языков даёт возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые средства. 

Изучение математики в 5 – 9 классах направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.

Место предмета в учебном плане.

В 5– 9 классах курс математики делится на три раздела: математика – 340 часов, алгебра – 324 часов, геометрия – 186 часов. Общее количество часов, отводимое БУП на изучение математики, – 850.
Общая характеристика учебного предмета
Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.

Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.

Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.
Общеучебные умения, навыки и способы деятельности.
В ходе преподавания математики в основной школе, работы над формированием у учащихся перечисленных в программе знаний и умений, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

  • планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

  • решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

  • исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

  • ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

  • проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

  • поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.


Содержание учебного курса математики
Арифметика
Натуральные числа. Десятичная система счисления. Римская нумерация. Арифметические действия над натуральными числами. Степень с натуральным показателем.

Делимость натуральных чисел. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители. Наибольший общий делитель и наименьшее общее кратное. Деление с остатком.

Дроби. Обыкновенная дробь. Основное свойство дроби. Сравнение дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части.

Десятичная дробь. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.

Рациональные числа. Целые числа: положительные, отрицательные и нуль. Модуль (абсолютная величина) числа. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Степень с целым показателем.

Числовые выражения, порядок действий в них, использование скобок. Законы арифметических действий: переместительный, сочетательный, распределительный.

Действительные числа. Квадратный корень из числа. Корень третьей степени. Понятие корней n степени из числа. Нахождение приближенного значения корня с помощью калькулятора. Запись корней с помощью степени с дробным показателем.

Понятие об иррациональном числе. Иррациональность числа. Десятичные приближения иррациональных чисел.

Действительные числа как бесконечные десятичные дроби. Сравнение действительных чисел, арифметические действия над ними.

Этапы развития представления о числе.

Текстовые задачи. Решение текстовых задач арифметическим способом.

Измерения, приближения, оценки. Единицы измерения длины, площади, объема, массы, времени, скорости. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире.

Представление зависимости между величинами в виде формул.

Проценты. Нахождение процента от величины, величины по ее проценту.

Отношение, выражение отношения в процентах. Пропорция. Пропорциональная и обратно пропорциональная зависимости.

Округление чисел. Прикидка и оценка результатов вычислений. Выделение множителя - степени десяти в записи числа.
Алгебра
Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных, входящих в алгебраические выражения. Подстановка выражений вместо переменных. Равенство буквенных выражений. Тождество, доказательство тождеств. Преобразования выражений.

Свойства степеней с целым показателем. Многочлены. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности, куб суммы и куб разности. Формула разности квадратов, формула суммы кубов и разности кубов. Разложение многочлена на множители. Квадратный трехчлен. Выделение полного квадрата в квадратном трехчлене. Теорема Виета. Разложение квадратного трехчлена на линейные множители. Многочлены с одной переменной. Степень многочлена. Корень многочлена.

Алгебраическая дробь. Сокращение дробей. Действия с алгебраическими дробями.

Рациональные выражения и их преобразования. Свойства квадратных корней и их применение в вычислениях.

Уравнения и неравенства. Уравнение с одной переменной. Корень уравнения. Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Решение рациональных уравнений. Примеры решения уравнений высших степеней; методы замены переменной, разложения на множители.

Уравнение с двумя переменными, решение уравнения с двумя переменными. Система уравнений, решение системы. Система двух линейных уравнений с двумя переменными, решение подстановкой и алгебраическим сложением. Уравнение с несколькими переменными. Примеры решения нелинейных систем. Примеры решения уравнений в целых числах.

Неравенство с одной переменной. Решение неравенства. Линейные неравенства с одной переменной и их системы. Квадратные неравенства. Примеры решения дробно-линейных неравенств.

Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств.

Переход от словесной формулировки соотношений между величинами к алгебраической.

Решение текстовых задач алгебраическим способом.

Числовые последовательности. Понятие последовательности. Арифметическая и геометрическая прогрессии. Формулы общего члена арифметической и геометрической прогрессий, суммы первых нескольких членов арифметической и геометрической прогрессий.

Сложные проценты.

Числовые функции. Понятие функции. Область определения функции. Способы задания функции. График функции, возрастание и убывание функции, наибольшее и наименьшее значения функции, нули функции, промежутки знакопостоянства. Чтение графиков функций.

Функции, описывающие прямую и обратную пропорциональную зависимости, их графики. Линейная функция, ее график, геометрический смысл коэффициентов. Гипербола. Квадратичная функция, ее график, парабола. Координаты вершины параболы, ось симметрии. Степенные функции с натуральным показателем, их графики. Графики функций: корень квадратный, корень кубический, модуль. Использование графиков функций для решения уравнений и систем.

Примеры графических зависимостей, отражающих реальные процессы: колебание, показательный рост. Числовые функции, описывающие эти процессы.

Параллельный перенос графиков вдоль осей координат и симметрия относительно осей.

Координаты. Изображение чисел очками координатной прямой. Геометрический смысл модуля числа. Числовые промежутки: интервал, отрезок, луч. Формула расстояния между точками координатной прямой.

Декартовы координаты на плоскости; координаты точки. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение прямой, угловой коэффициент прямой, условие параллельности прямых. Уравнение окружности с центром в начале координат и в любой заданной точке.

Графическая интерпретация уравнений с двумя переменными и их систем, неравенств с двумя переменными и их систем.
Геометрия
Начальные понятия и теоремы геометрии

Возникновение геометрии из практики.

Геометрические фигуры и тела. Равенство в геометрии.

Точка, прямая и плоскость.

Понятие о геометрическом месте точек.

Расстояние. Отрезок, луч. Ломаная.

Угол. Прямой угол. Острые и тупые углы. Вертикальные и смежные углы. Биссектриса угла и ее свойства.

Параллельные и пересекающиеся прямые. Перпендикулярность прямых. Теоремы о параллельности и перпендикулярности прямых. Свойство серединного перпендикуляра к отрезку. Перпендикуляр и наклонная к прямой.

Многоугольники.

Окружность и круг.

Наглядные представления о пространственных телах: кубе, параллелепипеде, призме, пирамиде, шаре, сфере, конусе, цилиндре. Примеры сечений. Примеры разверток.

Треугольник. Прямоугольные, остроугольные и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники, свойства и признаки равнобедренного треугольника.

Признаки равенства треугольников. Неравенство треугольника. Сумма углов треугольника. Внешние углы треугольника. Зависимость между величинами сторон и углов треугольника.

Теорема Фалеса. Подобие треугольников, коэффициент подобия. Признаки подобия треугольников.

Теорема Пифагора. Признаки равенства прямоугольных треугольников. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0° до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Теорема косинусов и теорема синусов, примеры их применения для вычисления элементов треугольника.

Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан. Окружность Эйлера.

Четырехугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равнобедренная трапеция.

Многоугольники. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Вписанные и описанные многоугольники. Правильные многоугольники.

Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности; равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд.

Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники. Вписанные и описанные окружности правильного многоугольника.

Измерение геометрических величин. Длина отрезка. Длина ломаной, периметр многоугольника.

Расстояние от точки до прямой. Расстояние между параллельными прямыми. Длина окружности, число; длина дуги. Величина угла. Градусная мера угла, соответствие между величиной угла и длиной дуги окружности.

Понятие о площади плоских фигур. Равносоставленные и равновеликие фигуры.

Площадь прямоугольника. Площадь параллелограмма, треугольника и трапеции (основные формулы). Формулы, выражающие площадь треугольника: через две стороны и угол между ними, через периметр и радиус вписанной окружности, формула Герона. Площадь четырехугольника.

Площадь круга и площадь сектора.

Связь между площадями подобных фигур.

Объем тела. Формулы объема прямоугольного параллелепипеда, куба, шара, цилиндра и конуса.

Векторы. Вектор. Длина (модуль) вектора. Координаты вектора. Равенство векторов. Операции над векторами: умножение на число, сложение, разложение, скалярное произведение. Угол между векторами.

Геометрические преобразования

Примеры движений фигур. Симметрия фигур Осевая симметрия и параллельный перенос. Поворот и центральная симметрия. Понятие о гомотетии. Подобие фигур.

Построения с помощью циркуля и линейки

Основные задачи на построение: деление отрезка пополам, построение треугольника по трем сторонам, построение перпендикуляра к прямой, построение биссектрисы, деление отрезка на n равных частей.

Правильные многогранники.
Элементы логики, комбинаторики, статистики и теории вероятностей
Доказательство. Определения, доказательства, аксиомы и теоремы; следствия. Необходимые и достаточные условия. Доказательство от противного. Прямая и обратная теоремы.

Понятие об аксиоматике и аксиоматическом построении геометрии. Пятый постулат Эвклида и его история.

Множества и комбинаторика. Множество. Элемент множества, подмножество. Объединение и пересечение множеств. Диаграммы Эйлера.

Примеры решения комбинаторных задач: перебор вариантов, правило умножения.

Статистические данные. Представление данных в виде таблиц, диаграмм, графиков. Средние результатов измерений. Понятие о статистическом выводе на основе выборки.

Понятие и примеры случайных событий.

Вероятность. Частота события, вероятность. Равновозможные события и подсчет их вероятности. Представление о геометрической вероятности.

.Учебно-тематическое планирование

5 класс

п/п

Название темы (раздела)

Количество часов

1

Натуральные числа и шкалы

17

2

Сложение и вычитание натуральных чисел

23

3

Умножение и деление натуральных чисел

29

4

Площади и объемы

15

5

Обыкновенные дроби

26

6

Десятичные дроби. Сложение и вычитание десятичных дробей

13

7

Умножение и деление десятичных дробей

26

8

Инструменты для вычислений и измерений

17

9

Повторение.

22




итого:

175

  1   2   3   4   5   6   7   8   9

Поделиться в соцсетях



Похожие:

Рабочая программа по математике (5 9 классы) iconРабочая программа опирается на умк
Рабочая программа составлена в соответствии с главными положениями фгос ооо, создана исходя из примерной программы по математике...

Рабочая программа по математике (5 9 классы) iconРабочая программа по математике(10-11 классы) фк гос
Данная программа ориентирована на обучающихся 10-11 классов общеобразовательной школы, изучающих математику на базовом уровне

Рабочая программа по математике (5 9 классы) iconРабочая программа по математике для 9 класса (предпрофильный уровень)...
Л. С. Атанасян, В. Ф. Бутузов, С. М. Кадомский и др. Геометрия. 7-9 классы. Сб программ, составитель Т. А. Бурмистрова, М., «Просвещение»...

Рабочая программа по математике (5 9 классы) iconРабочая программа по математике для 9 класса основного общего образования
Программы общеобразовательных учреждений. Алгебра 7-9 классы. / Сост. Т. А. Бурмистрова. – М.: Просвещение, 2009,стр. 177; с авторской...

Рабочая программа по математике (5 9 классы) iconРабочая программа По математике
Количество часов 170 Учитель Штенская Татьяна Евгеньевна Программа разработана на основе авторской программы Г. В. Дорофеева «Математика....

Рабочая программа по математике (5 9 классы) iconПрограммам по математике
Умк для 5-6 классов (Программы. Математика. 5-6 классы. Алгебра. 7-9 классы. Алгебра и начала математического анализа. 10-11 классы...

Рабочая программа по математике (5 9 классы) iconАннотации к рабочей программе по математике 8-9 классы рабочая программа
В основе рабочей программы лежит Примерная программа основного общего образования по математике и учебная программа А. Г. Мордковича...

Рабочая программа по математике (5 9 классы) iconРабочая программа по математике для 10-х классов составлена на основе...
«Алгебра и начала математического анализа. 10-11 классы», М: «Просвещение», 2009, составитель: Т. А. Бурмистрова, программы общеобразовательных...

Рабочая программа по математике (5 9 классы) iconИ. В. Позднякова рабочая программа по математике для 11 «Б» класса
...

Рабочая программа по математике (5 9 классы) iconПрограмма по математике разработана в соответствии с примерной программой...
Государственного стандарта среднего (полного) общего образования на базовом уровне. И. И. Зубарева, А. Г. Мордкович, Программы. Математика...


Алгебра




При копировании материала укажите ссылку © 2000-2017
контакты
al.na5bal.ru
..На главную